Modul Sistem Basis Data II AMIKI- Banda Aceh

Assalamu’alaikum…..

Sudah lama juga saya tidak lagi posting di blog ini, hmmmm….maklum banyak kerjaan hehehehehe :D

Okey di posting kali ini saya ingin menyertakan link download Modul Sistem Basis Data 2 yang saya buat untuk mahasiswa-mahasiswa saya di Akademi Manajemen Informatika Dan Komputer (AMIK) Indonesia. Modul ini merupakan lanjutan dari modul sistem basis data sebelumnya (lain kali saya kasi link-nya) yang membahas tentang database berelasi, pemanfaatan join, pengenalan Microsoft Access 2007, bagaimana membuat koneksi antara Access 2007 dengan database MySQL, dan bagaimana membuat paket aplikasi database yang nantinya dapat didistribusikan.

Okey…selamat membaca dan mencoba, semoga bermanfaat :)

Silahkan klik link dibawah ini untuk download

DOWNLOAD

 

Arithmetical Operations

Addition (addends, sum).

Addition – an operation of finding a sum of some numbers: 11 + 6 = 17. Here 11 and 6 – addends, 17 – the sum. If addends are changed by places, a sum is saved the same: 11 + 6 = 17 and 6 + 11 = 17.

Subtraction (minuend, subtrahend, difference).

Subtraction – an operation of finding an addend by a sum and another addend: 17 – 6 = 11. Here 17 is a minuend, 6 – a subtrahend, 11 – the difference.

Division(dividend, divisor, quotient, dividing integers, fraction, divisible numbers, remainder, division without remainder, division with remainder).

Division – an operation of finding one of factors by a product and another factor: 48 : 4 = 12. Here 48 is a dividend, 4 – a divisor, 12 – the quotient. At dividing integers a quotient can be not a whole number. Then this quotient can be present as a fraction. If a quotient is a whole number, then it is called that numbers are divisible, i.e. one number is divided without remainder by another. Otherwise, we have a division with remainder. For example, 23 isn’t divided by 4 ; this case can be written as: 23 = 5 · 4 + 3. Here 3 is a remainder.

Raising to a power (power, base of a power, index or exponent of a power, value of a power).

Raising to a power. To raise a number to a whole (second, third, forth, fifth etc.) power means to repeat it as a factor two, three, four, five and so on. The number, repeated as a factor, is called a base of a power; the quantity of factors is called an index or an exponent of a power; the result is called a value of a power. A raising to a power is written as:

3 5 = 3 · 3 · 3 · 3 · 3 = 243 .

Here 3 – a base of the power, 5 – an exponent (an index) of the power, 243 – a value of the power.

The second power is called a square, the third one – a cube. The first power of any number is that number.

Extraction of a root (root, radicand, index or degree of aroot, value of a root, square root, cube root).

Extraction of a root – an operation of finding a base of a power by the power and its exponent:

Here 243 – a radicand, 5 – an index (degree) of the root, 3 – a value of the root. The second root is called a square root, the third root – a cube root.

Greatest common factor (GCF). Finding GCF.

Common factor of some numbers – a number, which is a factor of each of them. For example, numbers 36, 60, 42 have common factors 2, 3 and 6 . Among all common factors there is always the greatest one, in our case this is 6. This number is called a greatest common factor (GCF).

 

Least common multiple (LCM). Finding LCM.

Common multiple of some numbers is called a number, which is divisible by each of them. For example, numbers 9, 18 and 45 have as a common multiple 180. But 90 and 360 are also theirs common multiples. Among all common multiples there is always the least one, in our case this is 90. This number is called a least common multiple (LCM).

Mathematical Terms 2

Algorithm – a step by step problem-solving procedure for solving computational mathematical problems

Array – a set of numbers that will follow a specific pattern. An orderly arrangement often in row, columns, or a matrix

Average – the middle or most common in a set of data. There are three types of average in mathematics- the mean, the median, and the mode.

Coefficient – a factor of the term. x is the coefficient in the term x(a + b) or 3 is the coefficient in the term 3y.

Common factors – a factor of two or more numbers. A number that will divide exactly into different numbers.

Composite number – a composite number has at least one other factor aside from its own. A composite number cannot be a prime number.

Constant – a value that doesn’t change.

Denominator – The denominator is the bottom number of a fraction. (Numerator is the top number)

Degree – the unit of an angle, angles are measured in degrees shown by the degree symbol: °

Difference – the difference is what is found when one number is subtracted

Digit – digits are making reference to numerals. 176 is a 3 digit number.

Dividend – the number that is being divided.

Divisor – the number that is doing the dividing.

Equation – a statement showing the equality of two expressions and joined by an equals sign.

Even number – a number that can be divided or is divisible by 2.

Event – often refers to the outcome of probability. Answers questions like ‘What is the probability the spinner will land on red?’

Evaluate – to calculate the numerical value.

Expressions – symbols that represent numbers or operations. A way of writing something that uses numbers and symbols.

Factor – a number that will divide into another number exactly. (The factors of 10 are 1, 2 and 5).

Factoring – the process of breaking numbers down into all of their factors.

Factorial notation – often in combinatory, you will be required to multiply consecutive numbers. The symbol used in factorial notation is ! When you see x!, the factorial of x is needed.

Factor tree – a graphical representation showing the factors of a specific number.

Fibonacci sequence – a sequence whereby each number is the sum of the two numbers preceding it.

Finite – not infinite. Finite has an end.

Formula – a rule that describes the relationship of two or more variables. An equation stating the rule.

Fraction – a way of writing numbers that are not whole numbers. The fraction is written like 1/2.

Frequency – the number of times an event can happen in a specific period of times. Often used in probability.

Greatest common factor (GCF) – the largest number common to each set of factors that divides both numbers exactly. E.g., the greatest common factor of 10 and 20 is 10.

Improper fraction – a fraction whereby the denominator is equal to or greater than the numerator. E.g., 4/6

Inequality – a mathematical equation containing either a greater than, less than or not equal to symbols.

Irrational – a number that cannot be represented as a decimal or as a fraction. A number like pi is irrational because it contains an infinite number of digits that keep repeating, many square roots are irrational numbers.

Linear equation – an equation whose graph is a line.

Logic -sound reasoning and the formal laws of reasoning.

Midpoint – a point that is exactly half way between two set points.

Mixed numbers – mixed numbers refer to whole numbers with fractions or decimals. Example 3 1/2 or 3.5.

Mode – the mode in a list of numbers refers to the list of numbers that occur most frequently. A trick to remember this one is to remember that mode starts with the same first two letters that most does.

Monomial – an algebraic expression consisting of a single term.

Multiple – the multiple of a number is the product of the number and any other whole number.

Nth root – the nth root of a number is the number needed to multiply by itself ‘n’ times in order to get that number.

Numerator – the top number in a fraction. In 1/2, 1 is the numerator and 2 is the denomenator. The numerator is the portion of the denominator.

Number line – a line in which points all correspond to numbers.

Numeral – a written symbol referring to a number.

Odd number – a whole number that is not divisible by 2.

Ordinal – ordinal numbers refer to the position: first, second, third etc.

Order of operations – a set of rules used to solve mathematical problems. BEDMAS is often the acronym used to remember the order of operations. BEDMAS stands for ‘brackets, exponents, division, multiplication, addition and subtraction.

Outcome – used usually in probability to refer to the outcome of an event.

Probability – the likelihood of an event happening.

Product – the sum obtained when any two or more numbers are multiplied together.

Qualitative – a general description of properties that cannot be written in numbers.

Quartic – a polynomial having a degree of 4.

Quintic – a polynomial having a degree of 5.

Quotient – the solution to a division problem.

Ratio – the relation between to quantities. Ratios can be expressed in words, fractions, decimals or percents. E.g., the ratio given when a team wins 4 out of 6 games can be said a 4:6 or four out of six.

Range – the difference between the maximum and the minimum in a set of data.

Repeating decimal – a decimal with endlessly repeating digits. E.g., 88 divided by 33 will give a 2.6666666666666

Remainder – the number that is left over when the number cannot be divided evenly into the number.

Unit – a standard quantity used in measurement. An inch is a unit of length, a centimeter is a unit of length, a pound is a unit of weight.

Uniform – all the same. Having the same in size, texture, color, design etc.

Variable – when a letter is used to represent a number or number in equations and or expressions. E.g., in 3x + y, both y and x are the variables.

 

Mathematical Terms 1((Geometry)

Angle – angles are formed by two rays that begin at the same point

Arc – a section or portion of the circumference of the circle

Area – the space measured in square units that any 2 dimensional shape or polygon occupies

Axis – the vertical and horizontal lines that make up the quadrants of coordinate plane. The vertical axis is usually referred to as the y axis and the horizontal axis is usually referred to as the x axis.

Base – the bottom of a shape, solid or three dimensional object. The base is what the object ‘rests’ on.

Bell curve – the shape of the graph that indicates the normal distribution.

Circumference – the complete distance around a circle or a square.

Chord – the segment which joins two points on a circle.

Complementary angles – the two angles involved when the sum is 90°.

Cone – a three dimensional shape with only one vertex, having a circular base.

Conic section – the section formed by the intersection of a plane and a cone.

Coordinate – the ordered pair that states the location on a coordinate plane. Used to describe location and or position.

Congruent – objects and figures that have the same size and shape. The shapes can be turned into one another with a flip, rotation or turn.

Cylinder – a three dimensional shape with a parallel circle at each end and joined by a curved surface.

Decagon – a polygon/shape that has ten angles and ten straight lines.

Diagonal – a line segment that connects two (non-adjacent) vertices in a polygon.

Diameter – a chord that passes through the centre of a circle. Also the length of a line that cuts the shape in half.

Edge – a line that joins a polygon or the line (edge) where two faces meet

Ellipse – an ellipse looks like a slightly flattened circle. A plane curve. Orbits take the form of ellipses.

End point – the ‘point’ at which a line or a curve ends.

Equilateral – all sides are equal.

Flip – a reflection of a two dimensional shape, a mirror image of a shape.

Geometry – the study of lines, angles, shapes and their properties. Geometry is concerned with physical shapes and the dimensions of the objects.

Graphing calculator – a larger screen calculator that’s capable of showing/drawing graphs and functions.

Graph theory – a branch of mathematics focusing on the properties of a variety of graphs.

Hexagon – a six sided and six angled polygon. Hex means 6.

Histogram – a graph that uses bars where each bar equals a range of values.

Hyperbola – one type of conic section. The hyperbola is the set of all points in a plane. The difference of whose distance from two fixed points in the plane is the positive constant.

Hypotenuse – the longest side of a right angle triangle. Always the side that’s opposite of the right angle.

Isosceles – a polygon having two sides equal in length.

Line – a straight infinite path joining an infinite number of points. The path can be infinite in both directions.

Line segment – a straight path that has a beginning and an end points.

Line of symmetry – a line that divides a figure or shape into two parts. The two shapes must equal one another.

Obtuse angle – an angle having a measure greater than 90° and up to 180°.

Obtuse triangle – a triangle with at least one obtuse angle as described above.

Octagon – a polygon with 8 sides.

Parralellogram -a quadrilateral that has both sets of opposite sides that are parallel.

Parabola – a type of curve, any point of which is equally distant from a fixed point, called the focus, and a fixed straight line.

Pentagon – a five sided polygon. Regular pentagons have five equal sides and five equal angles.

Perimeter -the total distance around the outside of a polygon. The total distance around is obtained by adding together the units of measure from each side.

Perpendicular – when two lines or line segments intersect and form right angles.

Plane – when a set of points joined together form a flat surface, the plane can extend without end in all directions.

Polygon – line segments joined together to form a closed figure. Rectangles, squares, pentagons are all examples of polygons.

Quadrant – one quarter (qua) of the plane on the cartesian coordinate system. The plane is divided into 4 sections, each section is called a quadrant.

Radius – a line segment from the center of a circle to any point on the circle. Or the line from the center of a sphere to any point on the outside edge of the sphere. The radius is the distance from the center of a circle/sphere to the outside edge (arc/surface).

Ray – a straight line with one endpoint. The line extends infinitely.

Rectangle – a parallelogram which has four right angles.

Reflection – a mirror image of a shape or an object. Obtained from flipping the image/object.

Right angle – an angle that is 90°.

Right triangle – a triangle having one angle equal to 90°.

Rhombus -a parallelogram with four equal sides, sides are all the same length.

Slope -the slope shows the steepness or incline of a line, determined from two points on the line.

Scalene triangle – a triangle with 3 unequal sides.

Sector – an area between an arc and two radiuses of a circle

Supplementary angles – two angles are supplementary if their sum totals 180°.

Transversal – a line that crosses/intersects two or more lines.

Trapezoid – a quadrilateral with exactly two parallel sides.

Triangle – three sided polygon.

Venn diagram – a Venn diagram is often two circles (can be other shapes) that might be overlap or independent each other. The overlapping part usually contains information that is pertinent to the labels on both sides of the Venn diagram.

Volume – a unit of measure. The amount of cubic units that occupy a space. A measurement of capacity or volume.

Vertex-a point of intersection where two (or more) rays meet, often called the corner. Wherever sides or edges meet on polygons or shapes. The point of a cone, the corners of cubes or squares.

X-axis – the horizontal axis in a coordinate plane.

X-intercept – the value of X when the line or curve intersects or crosses the x axis.

Y-axis – the vertical axis in a coordinate plane.

Y-intercept – the value of y when the line or curve intersects or crosses the y axis.

 

 

Two straight lines AB and CD are called parallel straight lines, if they lie in the same plane and don’t intersect however long they may be continued. The designation: AB|| CD. All points of one line are equidistant from another line. All straight lines, parallel to one straight line are parallel between themselves. It’s adopted that an angle between parallel straight lines is equal to zero. An angle between two parallel rays is equal to zero, if their directions are the same, and 180 deg, if the directions are opposite. All perpendiculars to the one straight line are parallel between themselves. Inversely, the straight line, which is perpendicular to one of parallel straight lines, is perpendicular to all others. A length of perpendicular segment, concluded between two parallel straight lines, is a distance between them.

 

Exercise:

1. It is a square. The length of  each side is 5 cm. The name of this square is ABCD. Could you determine the length of diagonal AC?

2. It is a circle in which P is a centre point. AC is a diameter. AP is equal to PC and we call them radius. The measure of angle APB is 60°. Could you determine the measure of angle CPB?

3. It is a right triangle. The length of its hypothenuse  is 5 cm and one of its edge is 4 cm long. Calculate the area of the triangle!

 

 

Ayo coba aplikasi Gadwin PrintScreen Professional

Salam rekan-rekan Numpang Share

Sudah punya rencana tidak buat ngisi bulan Ramadhan tahun ini????

Kalau Ane tahun ne pengen nyoba2 nulis buku. Tujuannya seh cuma sekedar nyari kegiatan sekaligus bagi2 elmu saja (shodaqoh jariah getu )  tp kalau bisa laku…”alhamdulillah ya “…khan lumayan…fulusnya bisa buat nambahin biaya kuliah S2 (ngarep…hehehehe…)

Trus mo nulis buku apa zed??????

Sesuai dengan elmu kanuragan yang dimiliki (dah macam dalam pilem2 silat saja….hehehehe), rencananya ane pengen nulis sebuah buku tutorial tentang Microsoft Excel 2007. Buku ini nantinya akan berisi semua materi-materi TIK (Teknologi Informasi Komputer) yang pernah ane ajarkan buat santri-santri di MA Darul ulum. So…mohon doanya semoga bisa selesai sesuai target :)

Hmmm….Seperti yang rekan-rekan tau, yang namanya buku tutorial komputer pasti gak sama dengan buku-buku yang isinya teori doang (misalnya: buku jaringan dasar). Namanya saja tutorial, mau tak mau ne buku harus full gambar dari A-Z sehingga dibutuhkan sebuah aplikasi PrintScreen yang nanti digunakan buat mengcapture step demi step pembuatan latihan yang dijelaskan di buku. Sebenarnya ada banyak aplikasi yang bisa digunakan, tapi untuk membuat buku tutorial ini ane menggunakan software Gadwin PrintScreen Professional 4.5 (versi terbarunya 4.8).

Gadwin PrintScreen Professional adalah software yang digunakan untuk mengambil gambar pada layar komputer tanpa harus menggunakan Kamera Digital. Software ini menggabungkan aplikasi screen capture dengan editing gambar sehingga gambar-gambar yang capture dapat diedit terlebih dahulu sebelum diinput ke Microsoft Word (kebetulan ane menggunakan Microsoft Word 2007 buat ngetik).

Okey rekan2… untuk lebih jelasnya berikut langkah-langkah menggunakan Gadwin PrintScreen Professional. Selamat membaca….

  1. Download terlebih dahulu aplikasi Gadwin PrintScreen Professional 4.5 disini
  2. Lakukan instalasi seperti biasa (gak sulit-sulit amat, cukup klik next saja)
  3. Jika instalasi berhasil, akan tampak seperti gambar berikut ini
  4. Buka aplikasi latihan yang ingin rekan2 capture step-stepnya (misalnya step-step buat merubah ukuran kolom di microsoft excel 2007). Lakukan step-stepnya, tahan lalu tekan tombol Printscreen di keyboard.
  5. Gadwin PrintScreen Professional akan meng-capture dan membawanya ke halaman Gadwin PrintScreen Prof-Screenshot Editor.Lakukan pengeditan gambar seperti memberi keterangan,memotong gambar, mengatur kontras, dan lain-lain.

Keterangan :

  • Action : berisi toolbar untuk menyetujui atau membatalkan pengambilan gambar.
  • Drawing : berisi toolbar untuk pengeditan gambar seperti memotong gambar, menambah shapes, textbox, dll.
  • Image : berisi toolbar untuk mengatur kecerahan gambar, resize, rotate, dll.
  • Zoom : berisi toolbar untuk mengatur preview image agar mudah di edit.
  • Editing : berisi toolbar untuk mengcopy, cut, paste, undo, dan redo.

Untuk memasukkan shapes, pilih model shapes yang akan digunakan lalu klik tahan dan drag pada layar.

Untuk memotong gambar, pilih toolbar Selectklik dan drag area yang ingin di potongklik kanan pada areaKlik Crop to selection.

klik tombol save as untuk menyimpan hasil editan

Nah…sekarang gambar yang akan digunakan sudah tersedia dan siap di input ke dalam tulisan kita

Gimana cara membuat pas photo sendiri dengan Adobe Photoshop 7.0

Rekan-rekan Numpang share

Pada artikel kali ini saya Cuma mo bagi2 pengalaman plus tutorial gimana caranya membuat pas photo sendiri menggunakan Adobe Photoshop 7.0. Okey selamat membaca…. :)

Jadi gene ceritanya, beberapa hari yang lalu entah dapat hidayah darimana zed pengen buat lanjutin kuliahnya ke jenjang yg lebih tinggi. Tapi yaaa…hidayah memang datang pada saat yg tidak disangka-sangka, ketika mo daftar….eeeh…. ternyata zed  kehabisan stok pas photo…ckckckckckc…(ne orng bener2 gak da persiapan), mana fulus dah habis buat biaya pendaftran n legalisir ijazah, waktunya dah mepet banget (harus daftar siang itu juga) dan ditambah lagi zed harus menyiapkan pas photo bewarna dengan berbagai ukuran (4×6, 3×4, 2×3, 1×1,5)  masing-masing tiga lembar lagi….huuuff….kebayang gak gimana ribetnya tu… :(

Hmmmmm…..Tapi bukan zed namanya kalo bisa keok Cuma sama yang gituan..hehehehehe… (jampok.com), so saatnya nyari solusi.. :)

Okey….siapin :

  1.  1 lbr kertas khusus buat foto (bisa dibeli di toko foto copy Cuma Rp. 2000,-)
  2. Printer yang bagus buat ngeprint foto (kebetulan di kamar ada printer cannon pixma MP 287)
  3. Aplikasi Adobe Photoshop 7.0
  4. Pas foto yang ingin di perbanyak

Langkah-langkah membuat pas Photo dengan Photoshop 7.0

  1. Buka aplikasi Adobe Photoshop 7.0, lalu buatlah lembaran kerja baru dengan memilih menu File – New
  2. Tentukan ukuran Preset Size sesuai yang anda inginkan (saya pilih A4 karena sesuai dengan ukuran kertas foto yang telah dipersiapkan dan kebetulan saya juga butuh photo yang banyak :) ). Buat Resolusinya pilih saja 300 (lihat gambar) lalu klik OK.
  3. Buka photo yang ingin digunakan dengan memilih menu File - Open – pilih photonya- open
  4. Pilih Croop Tool dan tentukan ukuran pemotongannya

untuk pas photo ukuran 3×4 :

  • Width = 3 cm
  • Height = 4 cm
  • Resolution = 3005.  Drak Croop tool pada photo, lalu tekan Enter

6. Pilih Move Tool lalu klik photo dan geser photo ke lembaran kerja yang telah disiapkan.

7. Lakukan langkah ke-4 hingga ke-6 untuk membuat photo ukuran 4×6, 2×3, dan 1 x 1,5 dan memindahkan photo ke lembaran kerja.

untuk pas photo ukuran 4×6 :

  • Width = 4 cm
  • Height = 6 cm
  • Resolution = 300

untuk pas photo ukuran 2×3 :

  • Width = 2 cm
  • Height = 3 cm
  • Resolution = 300

untuk pas photo ukuran 1×1,5 :

  • Width = 1 cm
  • Height = 1,5 cm
  • Resolution = 300

hasilnya dapat dilihat pada gambar:

Okey sekarang tinggal kita print……selamat mencoba :)

 

 

Merubah IP Address dalam desimal menjadi angka biner

Rekan-rekan Numpang Share

Pada artikel sebelumnya saya telah menjelaskan bagaimana merubah bilangan biner (binary) kedalam bilangan decimal dengan contoh kasus alamat IP Address di jaringan komputer.

Pada kesempatan kali ini, saya akan melanjutkan kembali pembahasan kita tentang bilangan biner dan decimal, tapi dengan materi yang sedikit berbeda yaitu bagaimana merubah bilangan decimal pada contoh kemarin kembali menjadi bilangan biner (binary). Okey…..Selamat belajar :)

Contoh :

Rubah kembali alamat IP Address 192.168.100.103 menjadi bilangan biner ?

Jawab:

IP Address 192.168.100.103 merupakan alamat IPv4 yang terdiri dari 4 bagian dan jika dalam bentuk binernya setiap bagian terdiri dari 8 bit.

Bagian I : 192

Untuk merubah bilangan decimal menjadi bilangan biner maka bilangan tersebut harus dibagi dengan 2 berkali-kali sehingga nilainya menjadi 1

Sehingga 192 jika dirubah ke bentuk biner menjadi : 11000000

Bagian 2: 168

Sehingga 168  jika dirubah ke bentuk biner menjadi : 10101000

Bagian 3: 100

Sehingga 100  jika dirubah ke bentuk biner menjadi : 1100100. (7 bit)
Hmm…coba rekan-rekan perhatikan jumlah bilangan binernya hanya ada 7 bit, sementara setiap bagian pada IPv4 harus terdiri dari 8 bit bilangan biner. Jika terjadi hal di atas, solusinya adalah  tambahkan nol (0) sebanyak digit yang kurang sehingga menjadi 8 bit.
Sehingga bilangan biner untuk 100 adalah 01100100

Bagian 4 : 103

Sehingga 103  jika dirubah ke bentuk biner menjadi : 1100111. (7 bit)
Karena ada 7 bit, tambahkan nol  ( 0) sehingga bilangan biner untuk 103 menjadi 01100111
Jadi, bilangan biner untuk IP Address 192.168.100.103 adalah :

11000000. 10101000. 01100100. 01100111

Mudah bukan, selamat mencoba pada IP Address yang lain dan semoga bermanfaat :)

Bagaimana Mengkonversikan Bilangan biner (binary) menjadi Bilangan Desimal???

Ini sebenarnya merupakan materi kuliah yang saya berikan kepada mahasiswa  di AMIKI pada mata kuliah Jaringan Dasar. Tapi rasanya tidak salah jika saya share disini, mungkin saja ada rekan-rekan Numpang Share yang membutuhkannya…so..selamat membaca :)

Rekan-rekan Numpang Share sekalian

Konversi Biner ke Desimal biasanya digunakan untuk merubah format penulisan IP Address yang awalnya ditulis dalam angka biner  (0 dan 1) lalu dirubah ke dalam angka desimal dengan tujuan agar gampang untuk diingat. Hmmmm bingung…..okey akan saya kasi gambarannya, sekarang coba  anda bandingkan format penulisan IP Address dibawah ini

IP Address ditulis dalam bentuk bil. biner :

11000000.10101000.01100100.01100111

IP Address yang sama tapi ditulis dalam bentuk bil. desimal :

192.168.100.103

Yang mana yang lebih mudah buat di ingat????  u Choice :)

Baik, sekarang saya akan menjelaskan gmn cara buat konversi IP Address diatas. Perhatikan contoh soal dibawah ini:

SOAL

Rubahlah IP address berikut ke dalam bentuk bilangan decimal

11000000.10101000.01100100.01100111

JAWAB

Jika kita perhatikan alamat IP address diatas maka dapat disimpulkan bahwa itu adalah alamat IP versi 4 (IPv4). Alamat IPv4 adalah bilangan biner 32 bit yang terbagi menjadi empat kelompok, sehingga masing-masing kelompok terdiri dari bilangan biner 8 bit.

Jadi untuk merubah bilangan biner diatas, alangkah mudahnya jika kita rubah satu persatu.

Bagian I : 11000000

  1. Masukkan bilangan biner diatas kedalam tabel berikut:
  2. Kalikan setiap bilangan biner diatas dengan bilangan 2 berpangkat* sehingga diperoleh hasil perkaliannya.
  3. Tambahkan hasil perkalian diatas “128+64+0+0+0+0+0+0 = 192”. Nilai 192 merupakan hasil konversi bilangan biner pada Bagian I

Bagian II: 10101000

Hasilnya : 128+0+32+0+8+0+0+0 = 168

Bagian III : 01100100

Hasilnya : 0+64+32+0+0+4+0+0 = 100

Bagian IV : 01100111

Hasilnya : 0+64+32+0+0+4+2+1 = 103

Jadi alamat IP 11000000.10101000.01100100.01100111 jika dirubah kedalam bentuk bilangan decimal ditulis :

192.168.100.103

Hmmmm…mudahkan…semoga bermanfaat :)

 

*)Bilangan biner atau bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1

Cara Menginstal Internet Download Manager (IDM)

Rekan-rekan Numpang Share

Jika pada artikel yang lalu saya membahas tentang software Internet Download Manager (IDM), sekarang saya akan coba untuk share kepada rekan-rekan semua bagaimana cara menginstal Internet Download Manager tersebut sehingga dapat digunakan untuk mendownload file yang diinginkan dari internet.

Okey….sebelumnya saya harap rekan-rekan sudah mendownload terlebih dahulu aplikasi IDM versi terbarunya yaitu IDM 6.11 + Crak (loh kok pake crak????….sstt..jgn keras2…software  IDM sebenarnya memang gak gratis alias harus beli, tapi daripada beli mending kita crak saja biar jd original :D ….hehehehe)

Jika belum punya IDM 6.11, silahkan download disini

Selanjutnya ikuti langkah-langkah buat menginstal IDM berikut ini:

  1. Extrak terlebih dahulu aplikasi IDM 6.11 yang sudah anda download, lalu buka foldel IDM 6.11 bulid 7.
  2. Klik aplikasi idman611.exe untuk memulai proses instalasi.
  3. Selanjutnya anda akan memasuki halaman Internet Download Manager Instalation Wizard yang merupakan halaman selamat datang dari IDM, klik Next untuk melanjutkan.
  4. Anda akan memasuki halaman license IDM, silahkan baca atau langsung klik Next untuk melanjutkan.
  5. Pada halaman selajutnya anda akan diminta untuk mentukan letak dimana IDM akan di instal, secara default IDM akan di install di C:\Program aplikasi\Internet Download Manager. Klik Next buat melanjutkan.
  6. Anda akan memasuki halaman Select Program Manager Group. Abaikan saja, klik Next buat melanjutkan instalasi.
  7. Selanjutnya anda akan memasuki halaman Star Instalation of Internet Download Manager. Klik Next jika anda sudah yakin tidak ada perubahan pada halaman sebelumnya.
  8. Tunggu hingga proses intalasi selesai lalu klik finish.

 

Selamaaaat…… sekarang anda telah berhasil menginstal IDM di komputer anda. Tapi tunggu dulu…sepertinya ada yang aneh ne, kenapa kok tiba2 muncul keterangan seperti ini??? (lihat gambar).

kemudian anda juga diperintahkan buat melakukan registrasi terlebih dahulu

Hahahahahahaha….Rekan–rekan gak usah galau dulu….tenang

Sebelumnya kan saya sudah sampaikan di atas bahwa IDM bukanlah aplikasi yang gratis tapi anda harus membayar beberapa dolar jika rekan-rekan ingin menggunakan aplikasi tersebut.

Tapi tidak usah khawatir…… saya sudah mempersiapkan craknya agar IDM kita jadi original dan bisa dipakai sepuasnya…GRAAAATIIIIISSSSS…!!!!

Buat nge-crak IDM jadi original ikuti langkah berikut :

  1. Buka kembali folder IDM 6.11 Build 7 tadi, trus buka folder Patch.
  2. Klik aplikasi Patch.exe buat membuka aplikasi crak kita.
  3. Setelah aplikasi crak berjalan, pilih Patch dan masuklah pada folder tempat kita menginstal IDM yang telah kita tentukan sebelumnya (baca tutorial diatas urutan ke-5).
  4. Selanjutnya pilih IDman.exe lalu open.
  5. Masukkan nama anda untuk registrasi (bebas) lalu klik OK.
  6. Jika berhasil maka akan muncul tulisan Successfully patched!  dan IDM anda sekarang siap buat digunakan tampa harus registrasi lagi  :D

 

Yuk coba aplikasi download manager yang super cepat

Internet Download Manager (IDM) adalah software download dengan kecepatan sampai 5 kali dari kondisi normal. Lengkap dengan error recovery dan kemampuan melanjutkan atau restart download yang rusak atau terputus karena kehilangan koneksi, masalah jaringan, komputer shutdowns, atau listrik padam tak terduga. Antarmuka grafis yang sederhana membuat IDM user friendly dan mudah untuk digunakan. Berikut beberapa kelebihan yang dimiliki oleh IDM bila kita bandingkan dengan software download data lainnya :

  1. Mendukung semua browser populer. Internet Download Manager mendukung semua versi browser populer, dan dapat diintegrasikan ke dalam aplikasi Internet pihak ke-3.
  2. Download dengan satu klik. Bila Anda klik pada link download di browser, IDM akan mengambil alih download dan mempercepatnya. IDM mendukung HTTP, FTP dan protokol HTTPS.
  3. Download Speed. Internet Download Manager dapat mempercepat download hingga 5 kali dengan teknologi cerdas segmentasi dinamis.
  4. Resume Download. Internet Download Manager akan melanjutkan download yang belum selesai dari tempat di mana mereka tinggalkan.
  5. Proses instalasi Cepat. Program cepat dan instalasi mudah akan membuat pengaturan yang diperlukan untuk Anda, dan memeriksa koneksi terakhir Anda untuk memastikan masalah instalasi dari Internet Download Manager.

Bagi rekan-rekan yang ingin mencoba software ini dapat langsung mendownload versi terbarunya berikut ini Download IDm 6.11 Full Version

So…Buat rekan-rekan yang selama ini merasa malas untuk mendownload file (video, gambar, musik, dll) dari internet karena koneksi lambat, kini tidak usah khawatir lagi karena software download manager ini mampu memberi solusi buat anda.

Selamat mendownload ^^

Baca juga Cara Menginstal Internet Download Manager (IDM)